

Formalization of the First Theorem of Welfare Economics

Julian Parsert Cezary Kaliszyk

Department of Computer Science, Innsbruck

SIG

Vienna September 10, 2017

Contents

- Economics
- Formalization
- Models
- The First Welfare Theorem
- Future Work and Misc.

Section 1

Economics

Economy vs Market

Economy vs Market

Economy

- more general notion of a game.
- "Set of Markets"
- Market Economy, Planned Economy, Command Economy, etc.

Economy vs Market

Economy

- more general notion of a game.
- "Set of Markets"
- Market Economy, Planned Economy, Command Economy, etc.

Market

- "A place for transaction"
- "Rules of transaction"
- Competitive markets, duopoly, monopoly, etc.

Consumption sets

- "Set of Goods and Services"
- represented as vectors: $(1, 0, 12, \pi, 0, \dots, 5)$
- *n* goods represented by an *n*-dimensional euclidean space

Consumption sets

- "Set of Goods and Services"
- represented as vectors: $(1, 0, 12, \pi, 0, \dots, 5)$
- *n* goods represented by an *n*-dimensional euclidean space

Comparison

- Preference (relation)
- Utility function

Consumption sets

- "Set of Goods and Services"
- represented as vectors: $(1, 0, 12, \pi, 0, \dots, 5)$
- n goods represented by an n-dimensional euclidean space

Comparison

- Preference (relation)
- Utility function

Definition (Utility function)

Given a preference relation \succeq , a utility function u, is defined:

$$u : X^n \mapsto \mathbb{R}$$
$$\forall x \ y \ x \succeq y \iff u(x) \ge u(y).$$

Julian Parsert, Cezary Kaliszyk (DCS)

(1 apple, 1 orange) \succ (0, 0);

(1 apple, 1 orange) \succ (0, 0); (1, 0) \succ (0, 1);

 $u(1,\,1)>u(0,\,0);\ u(1,\,0)>u(0,\,1);$

(1 apple, 1 orange) \succ (0, 0); (1, 0) \succ (0, 1); (10, 5) \approx (9, 10)

u(1, 1) > u(0, 0); u(1, 0) > u(0, 1); u(10, 5) = u(9, 10)

(1 apple, 1 orange) \succ (0, 0); (1, 0) \succ (0, 1); (10, 5) \approx (9, 10)

u(1, 1) > u(0, 0); u(1, 0) > u(0, 1); u(10, 5) = u(9, 10)

Pareto Efficiency & Walrasian Equilibrium

Pareto Efficiency & Walrasian Equilibrium

Definition (Walrasian Equilibirum)

An allocation and a price is said to be in a Walrasian Equilibrium if every consumer chooses bundles that maximizes their utility while being subject to the budget constraint.

Pareto Efficiency & Walrasian Equilibrium

Definition (Walrasian Equilibirum)

An allocation and a price is said to be in a Walrasian Equilibrium if every consumer chooses bundles that maximizes their utility while being subject to the budget constraint.

Definition (Pareto Efficiency)

Pareto efficiency is said to occur when it is impossible to make one agent better off without making another worse off.

Edgeworth Box

- Pure exchange Market Model
- 2 consumers
- 2 goods
- Visual Interpretation

Section 2

Formalization

Utility and Preference

Preference relation

 $\begin{array}{l} \mbox{locale preference} = \\ \mbox{fixes carrier}:: "'a set" \\ \mbox{fixes relation}:: "'a relation" \\ \mbox{assumes not_outside: "}(x,y) \in relation \Longrightarrow x \in carrier" \\ \mbox{and "}(x,y) \in relation \Longrightarrow y \in carrier" \\ \mbox{assumes trans refl: "preorder on carrier relation"} \end{array}$

Rational preference relation

locale rational_preference = preference +
assumes "total_on carrier relation"

Utility and Preference cont.

Utility function

Local non-satiation and Pareto ordering

Local non-satiation

definition local_nonsatiation where

 $\label{eq:alpha} \begin{array}{l} \text{"local_nonsatiation B P} \longleftrightarrow \ (\forall x \in B. \ \forall e > 0. \ \exists y \in B. \\ \text{norm } (y - x) \leq e \ \land \ y \succ [P] \ x) \end{array}$

Local non-satiation and Pareto ordering

Local non-satiation

$\begin{array}{l} \mbox{definition local_nonsatiation where} \\ \mbox{"local_nonsatiation B P} \longleftrightarrow \quad (\forall x {\in} B. \ \forall \, e{>} 0. \ \exists \, y {\in} B. \\ \ norm \ (y - x) \leq e \ \land \ y \ \succ [P] \ x) \mbox{"} \end{array}$

Pareto ordering

 $\begin{array}{ll} \textbf{definition} \text{ pareto_dominating } \textbf{where} \\ "X \succ \mathsf{Pareto} \ \mathsf{Y} \longleftrightarrow \\ (\forall i \in \mathsf{agents.} \ \mathsf{U}[i] \ (X \ i) \geq \mathsf{U}[i] \ (Y \ i)) \land \\ (\exists i \in \mathsf{agents.} \ \mathsf{U}[i] \ (X \ i) > \mathsf{U}[i] \ (Y \ i))" \end{array}$

Section 3

Models

Exchange economy

```
locale exchange_economy =
 fixes consumption_set :: "('a::ordered_euclidean_space) set"
 fixes agents :: "'i set"
 fixes \mathcal{E} :: "'i \Rightarrow 'a"
 fixes Pref :: "'i \Rightarrow 'a relation"
 fixes U :: "'i \Rightarrow 'a \Rightarrow real"
 fixes Price :: "'a"
 assumes "Price > 0"
 assumes "i \in agents \Longrightarrow
  eucl_ordinal_utility consumption_set (Pref i) (U i)"
 assumes "finite agents" and "agents \neq {}"
```

Exchange economy

```
\begin{array}{l} & \dots \\ \mbox{fixes firms :: "'f set"} \\ \mbox{fixes $\Theta$ :: "'i $\Rightarrow$ 'f $\Rightarrow$ nat" ("$\Theta[\_,\_]"$)} \\ \mbox{assumes "i $\in$ agents $\Longrightarrow$} \\ & eucl\_ordinal\_utility consumption\_set $Pr[i] U[i]"$ \\ \mbox{and "pre\_arrow\_debreu\_consumption\_set consumption\_set"} \\ \mbox{assumes "j $\in$ firms $\Longrightarrow$ ($\sum$ i$\in$ agents. $\Theta[i,j]$) = 1"$ \\ \mbox{assumes "Price $> 0"$ \\ \mbox{assumes "finite agents" and "agents $\neq$ {}"$ \\ \end{array}
```

Competitive Equilibria

definition competitive_equilibrium

where

 $\label{eq:competitive_equilibrium P X Y \longleftrightarrow feasible X Y \land \\ (\forall j \in firms. (Y j) \in profit_maximisation (production_sets j)) \land \\ (\forall i \in agents. (X i) \in arg_max_set U[i] \\ (budget_constraint (poe_wealth i Y)))"$

$\begin{array}{l} \mbox{definition budget_constraint} \\ \mbox{where} \\ \mbox{"budget_constraint W} = \\ & \{x \in \mbox{consumption_set. Price} \cdot x \leq W\}" \end{array}$

Section 4

The First Welfare Theorem

Some History

Some History

It is not from the benevolence of the butcher, the brewer, or the baker that we expect our dinner, but from their regard to their own interest.

— Adam Smith, Wealth of Nations (1776)

By pursuing his own interest he frequently promotes that of the society more effectually than when he really intends to promote it.

- Adam Smith, Wealth of Nations (1776)

First Welfare Theorem

Theorem (First Theorem of Welfare Economics)

Assuming locally non-satiated preferences for each agent, any allocation in combination with a price vector that forms a Walrasian Equilibrium is Pareto Efficient.

First Welfare Theorem

Theorem (First Theorem of Welfare Economics)

Assuming locally non-satiated preferences for each agent, any allocation in combination with a price vector that forms a Walrasian Equilibrium is Pareto Efficient.

Future Work and Misc.

- Second Welfare Theorem
- more (economic) models
- formalizing more Game Theory: Algorithmic Game theory, Mechanisms, ...

https://www.isa-afp.org/entries/First_Welfare_Theorem.html

Questions?

Ordinal Utility

Finite Carrier

theorem fnt_carrier_exists_util_fun: assumes "finite carrier" assumes "rational_preference carrier relation" shows "∃u. ordinal_utility carrier relation u"

Walras' Law

Walras' Law

lemma walras_law: assumes " \land i. i \in agents \implies local_nonsatiation consumption_set Pr[i]" assumes "competitive_equilibrium Price X Y" shows "Price \cdot (($\sum i \in$ agents. (X i)) -($\sum i \in$ agents. $\mathcal{E}[i]$) - ($\sum j \in$ firms. Y j)) = 0"

Walras' Law

